Letter from the President and the Chair of Ophthalmology

About the Quality and Outcomes Program

Ophthalmology Clinical Leadership in Quality 2018

About Massachusetts Eye and Ear Department of Ophthalmology Overview

Key Statistics

Emergency Department

Eye Trauma Surgery

Cataract Surgery

Retina Surgery

Glaucoma Surgery

Refractive Surgery

Cornea Surgery

Oculoplastic Surgery

Neuro-Ophthalmology

Pediatric and Adult Strabismus Surgery

Ocular Immunology and Uveitis Service

Vision Rehabilitation Service

Ophthalmology Medical Staff and Practice Locations

Contributors

Appendix
Dear Colleagues in Health Care,

Since 2010, Massachusetts Eye and Ear has led the medical community in the development and implementation of outcomes measures for the field of Ophthalmology, and we have consistently reported on these measures in our Quality and Outcomes annual report.

In publishing these reports year after year, we have defined important measures for the ophthalmology field that include the full spectrum of care that we provide — from routine to very complex procedures. By sharing our clinical data, we hope to set standards of transparency and accountability in ophthalmology and inspire other centers around the country to engage in similar public reporting.

This report reflects the meticulous work of many contributors. We thank Dr. Alice Lorch, Chief Quality Officer for Ophthalmology, for her leadership in this project, as well as her team of faculty, administrators and trainees. We also want to thank Dr. Matthew Gardiner, Associate Director of Quality for Ophthalmology, as well as the clinicians, technicians, nurses and other staff members at Mass. Eye and Ear who work hard every day to provide the highest quality care to our patients. A special note of thanks to former Chief Quality Officer, Dr. Teresa Chen, whose decade of leadership in this initiative helped to establish Mass. Eye and Ear as an international leader in quality and outcomes reporting.

For more information about Mass. Eye and Ear's Quality Program initiative and to view an electronic copy of this report, please visit our website at MassEyeAndEar.org.

John Fernandez, President
Massachusetts Eye and Ear

Joan W. Miller, MD
David Glendenning Cogan
Professor of Ophthalmology
Chief and Chair, Department of Ophthalmology
Massachusetts Eye and Ear
Massachusetts General Hospital
Brigham and Women’s Hospital
Harvard Medical School
Since our founding in 1824, Massachusetts Eye and Ear has been a leader in clinical, educational, and research innovation that has improved ophthalmic care across every subspecialty. One recent success is captured on the cover of this report, which shows Dr. Jason Comander performing the first administration of the newly FDA-approved gene therapy drug, Luxturna®, on a patient at Mass. Eye and Ear. This milestone marked the beginning of a new era in medicine, as it is the first time any FDA-approved gene therapy drug had been given to a patient with an inherited disease.

At Mass. Eye and Ear, we embrace the challenges of complicated disease while also closely monitoring the outcomes of our most common surgical and medical care. We are equally proud of — and committed to — the quality of ophthalmic care that all of our patients receive, whether for an inherited retinal disease or for a routine cataract procedure.

The measures that have grown from our annual Quality and Outcomes book over the last decade have established both national benchmarks as well as internal metrics by which we critically monitor our own progress. Quality improvement projects within our department are based on these data analyses. We share the information in this book both to inspire other ophthalmology departments with a template for quality reporting and to inform our patients about their care.

In the Quality Department at Mass. Eye and Ear, our commitment to self-evaluation and transparency using data analysis manifests in many initiatives beyond the Quality and
Outcomes book. We closely monitor Patient Safety through an electronic and anonymous reporting system that all employees are encouraged to use. We study our Patient Experience by applying LEAN techniques to improve clinic efficiency as well as by collecting Patient Related Outcomes Measures (PROMs) within our electronic medical record. We introduce the importance of Quality Monitoring and Improvement to our trainees through didactics and participation in quality improvement projects.

This year, Mass. Eye and Ear was selected as one of five academic groups in the United States awarded access to the American Academy of Ophthalmology’s IRIS® Registry Database — the country’s largest specialty clinical data registry containing clinical benchmarks and practice patterns on nearly 50 million U.S. patients and 200 million patient visits. Under the direction of department chair, Dr. Joan Miller, and me, we are at the forefront of using “big data” for quality improvement and monitoring. Our goal is to partner with the medical community to develop clinical outcomes measures that will improve the patient experience, improve the health of populations, and reduce the cost of healthcare.

This is my first year overseeing the development of the Quality and Outcomes book for the Department of Ophthalmology at Mass. Eye and Ear, with the assistance of research assistants Mirjana Nordmann, Ph.D., and Colleen Szypko. Thank you to Dr. Teresa Chen, former Chief Quality Officer (2010-2017), as well as Dr. Matthew Gardiner, Associate Director of Quality for Ophthalmology, for their support. As a Quality team, we are excited by the prospect of expanding the Quality and Outcomes book in the coming years. We hope that you find this information useful, and we welcome your comments and feedback.

Alice Lorch, MD, MPH
Chief Quality Officer
Department of Ophthalmology
Massachusetts Eye and Ear
Harvard Medical School
Ophthalmology Clinical Leadership in Quality: 2018

Joan W. Miller, MD
David Glendenning Cogan Professor of Ophthalmology,
Chair, Department of Ophthalmology, Harvard Medical School
Chief of Ophthalmology, Massachusetts Eye and Ear,
Massachusetts General Hospital
Brigham and Women’s Hospital

Debra Rogers, MSM
Senior Vice President for Ophthalmology and Ambulatory Operations,
Massachusetts Eye and Ear

Matthew Gardiner, MD
Assistant Professor of Ophthalmology, Harvard Medical School
Associate Chief for Clinical Operations, Massachusetts Eye and Ear
Associate Director of Quality, Ophthalmology, Massachusetts Eye and Ear

Alice Lorch, MD, MPH
Instructor in Ophthalmology, Harvard Medical School
Chief Quality Officer, Department of Ophthalmology,
Massachusetts Eye and Ear

Eileen Lowell, MM, BSN, RN
Vice President of Patient Care Services, Chief Nursing Officer,
Massachusetts Eye and Ear
About Massachusetts Eye and Ear

Founded in 1824, Massachusetts Eye and Ear is a pre-eminent specialty, teaching and research hospital dedicated to caring for disorders of the eyes, ears, nose, throat, head, and neck. Our dedicated staff provides primary and subspecialty care and serves as a referral center for inpatient and outpatient medical and surgical care.

Mass. Eye and Ear is the leading authority in its specialties throughout the Northeast and is a resource globally for advances in patient care, research, and education. As the primary academic medical center for Harvard Ophthalmology, and the hub of its research and teaching facilities, Mass. Eye and Ear encourages multidisciplinary and interdisciplinary pursuits across patient care, research, and education. Seminal contributions to these three mission-critical areas span nearly two hundred years and have shaped the hospital’s reputation and success as a national and global center of excellence.

Pivotal to our clinical quality efforts is the use of Partners eCare, a highly integrated health information system. Partners eCare is utilized by a large segment of Harvard Medical School’s network of hospitals and affiliates, facilitating quick and easy communication amongst referring physicians and Mass. Eye and Ear’s consulting ophthalmologists, otolaryngologists, and radiologists.

2017 Ophthalmology and Otolaryngology Hospital Statistics
(January 1 – December 31, 2017)

| Patient Volume |
| All services at Mass. Eye and Ear locations by faculty and non-faculty physicians. |
Outpatient Services*	491,704
Ambulatory Surgery Services	32,717
Inpatient Surgical Services	1,015
Emergency Department Services	20,172
Discharges	1,279
Beds	41
Overall Operating Revenue#	$454,538,656

*All clinic visits, Ambulatory Surgery Services, and Emergency Department Services
#All sites, clinical and non-clinical

Clinical Locations

- Boston - 243 Charles St.*
- Boston - Longwood*
- Braintree
- Concord
- Duxbury
- East Bridgewater*
- Harwich
- Malden*
- Mashpee
- Medford
- Milton
- Newton
- Plainville*
- Providence*
- Quincy
- Stoneham*
- Waltham*
- Wellesley
- Weymouth

*Denotes locations with ophthalmology services.

For more information, visit MassEyeAndEar.org/Locations
Massachusetts Eye and Ear Ophthalmology Department

At the Mass. Eye and Ear/Harvard Department of Ophthalmology, we have nearly two centuries of experience in developing innovative approaches to treating eye disease and reducing blindness worldwide. We founded subspecialty training in the areas of cornea, retina, and glaucoma, and have pioneered tools and treatments for numerous diseases and conditions ranging from retinal detachment to age-related macular degeneration to corneal scarring. Our patient-centered core values focus on delivering the highest quality of care through education, innovation, and service excellence.

We Are:

• The primary teaching hospital of the Harvard Medical School Department of Ophthalmology
• Home to Schepens Eye Research Institute of Mass. Eye and Ear, Howe Laboratory, and Berman-Gund Laboratory for the Study of Retinal Degenerations
• Accelerating research and discovery through our Harvard Ophthalmology multidisciplinary institutes and subspecialty-based centers of excellence:
 - Ocular Genomics Institute
 - Ocular Regenerative Medicine Institute
 - Infectious Disease Institute
 - Age-Related Macular Degeneration Center of Excellence
 - Cornea Center of Excellence
 - Diabetic Eye Disease Center of Excellence
 - Glaucoma Center of Excellence
 - Mobility Enhancement & Vision Rehabilitation Center of Excellence
 - Ocular Oncology Center of Excellence

Academic Affiliations

Harvard Medical School
Massachusetts General Hospital
Brigham and Women’s Hospital
Boston Children’s Hospital
Beth Israel Deaconess Medical Center
VA Boston Healthcare System
VA Maine Healthcare System
Cambridge Health Alliance
Aravind Eye Hospital, Madurai, India
Shanghai Eye and ENT Hospital: Fudan University, Shanghai, China
LV Prasad Eye Institute, Hyderabad, India

Clinical Affiliations

Massachusetts General Hospital (MGH) Department of Ophthalmology

• Mass. Eye and Ear clinicians provide comprehensive and subspecialty care to MGH patients in outpatient, inpatient consultation, surgical, and emergency care settings. Our 24/7 Emergency Department is a regional resource for urgent care and trauma, and our clinicians collaborate in the care of patients with ocular cancers and burns.
• Mass. Eye and Ear’s dedicated Same Day Service triages urgent and emergent eye concerns of MGH patients as a less costly, more efficient alternative to Emergency Department care.
Brigham and Women’s Hospital (BWH)

- Mass. Eye and Ear ophthalmologists provide comprehensive and subspecialty care and inpatient consultations to BWH patients, including 24/7 emergency eye care and trauma coverage.
- BWH patients also receive a full range of ophthalmic care including dedicated Same Day Service, urgent consultation, evaluations and surgery at Mass. Eye and Ear, Longwood, staffed by Mass. Eye and Ear clinicians.

Boston Children’s Hospital Ophthalmology Foundation

- Boston Children’s Hospital clinicians staff the comprehensive pediatric ophthalmology and adult strabismus service at Mass. Eye and Ear and Mass General Hospital, and reassure coverage for retinopathy of prematurity screenings.
- Mass. Eye and Ear ophthalmologists provide subspecialty care in glaucoma, cornea, and pediatric retina surgery at Boston Children’s Hospital.

Ophthalmology Resources at Mass. Eye and Ear

- Highly skilled teams provide a full spectrum of primary and subspecialty ophthalmic care
- Our dedicated eye emergency department is available 24/7.
- The de Gunzburg Retinal Imaging Suite offers state-of-the-art spectral domain optical coherence tomography, optical coherence tomography angiography, and swept source optical coherence tomography ultrasound angiography
- Our Inherited Retinal Disorders Service performs evaluations of patients referred for diagnosis, prognosis, genetic counseling, and treatment of retinal degenerative disorders.
- The Ocular Melanoma Center, a premier referral center for the diagnosis and treatment of eye tumors, draws patients from around the world.
- The Morse Laser Center provides advanced laser procedures using state-of-the-art refractive, glaucoma, retinal, and anterior segment lasers.
- The Ocular Surface Imaging Center enables rapid, non-invasive corneal biopsies.
- The David Glendenning Cogan Laboratory of Ophthalmic Pathology provides enhanced diagnostic services in conjunction with the MGH Surgical Pathology Service.
- The Mass. Eye and Ear Infectious Disease Institute tracks all cases of infections after all procedures performed at Mass. Eye and Ear or at any of its affiliates.
- Our expanding Optometry Service provides screening and vision care in the context of ophthalmic practice.
- The full service Contact Lens Service specializes in therapeutic fits, bandage, and specialty contact lenses.
- The Mass. Eye and Ear Radiology Department houses a dedicated MRI/CT imaging suite.

For more information about the Mass. Eye and Ear Quality Program or the Department of Ophthalmology, please visit our website at www.MassEyeAndEar.org.
• Our dedicated Social Work and Discharge Planning Department provides information, counseling, and referral services to patients and their families.

• The International program offers patients assistance with appointments, transportation, accommodations, and language translation.

• The Altschuler Surgical Training Laboratory serves as a cornerstone of the surgical training program at Mass. Eye and Ear/Harvard Ophthalmology, and houses state-of-the-art surgical equipment, training machines for vitreoretinal and cataract surgery, a proctor station with a plasma screen, and other technological improvements.

• The Howe Library houses one of the most extensive ophthalmology research collections in the world. The library also belongs to several consortia, including The Francis A. Countway Library of Medicine at Harvard Medical School, and maintains cooperative arrangements with other institutions such as the National Library of Medicine, and Association of Vision Science Libraries.
Mass. Eye and Ear Ophthalmology Key Statistics
(January 1–December 31, 2017)

<table>
<thead>
<tr>
<th>Subspecialty</th>
<th>Patient Visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient Ophthalmology Encounters</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Ophthalmology and Cataract Consultation</td>
<td>51,537</td>
</tr>
<tr>
<td>Trauma</td>
<td>543</td>
</tr>
<tr>
<td>Cornea</td>
<td>21,455</td>
</tr>
<tr>
<td>Optometry</td>
<td>11,875</td>
</tr>
<tr>
<td>Ophthalmic Plastic and Reconstructive Surgery</td>
<td>10,665</td>
</tr>
<tr>
<td>Glaucoma</td>
<td>26,697</td>
</tr>
<tr>
<td>Immunology and Uveitis</td>
<td>7,644</td>
</tr>
<tr>
<td>Inherited Retinal Disorders</td>
<td>1,419</td>
</tr>
<tr>
<td>Neuro-Ophthalmology</td>
<td>7,350</td>
</tr>
<tr>
<td>Retina</td>
<td>46,647</td>
</tr>
<tr>
<td>Vision Rehabilitation</td>
<td>1,130</td>
</tr>
<tr>
<td>Total Outpatient Ophthalmology Visits</td>
<td>186,962</td>
</tr>
</tbody>
</table>

Emergency Room Visits
Total Ophthalmology Visits..15,523

Surgical Procedures
Total Ophthalmology Surgeries..12,890
Total Ophthalmology Laser Procedures3,762
Refractive Procedures ...551
Total Intravitreal Injections ..15,492
Total Ophthalmology Procedures...32,695

All benchmarks reported reflect the most recent values published in the literature.
Emergency Department

The emergency department at Mass. Eye and Ear provides 24/7 urgent ophthalmic care for the local community and for patients who are referred to Mass. Eye and Ear from throughout the region. The department works closely with Massachusetts General Hospital’s emergency department to co-manage and coordinate care for patients with ophthalmic problems.

Ophthalmology Emergency Visits

This bar graph shows the average number of ophthalmology initial encounters seen monthly by the Mass. Eye and Ear Emergency Department across the last nine calendar years.

Ophthalmology Visit Times

The average ophthalmology visit time in the Mass. Eye and Ear Emergency Department for calendar year 2017 was 2.7 hours. The visit time is defined as the total time from when the patient walked into Mass. Eye and Ear’s Emergency Department to when the patient finished the visit with the ophthalmologist. Visit times over 3 standard deviations from the raw mean were considered outliers and were excluded from the final analysis due to suspicion of poor documentation in those cases. According to the 2010 Press Ganey Emergency Department Pulse Report, patients across the United States spent an average of four hours and seven minutes (4.12 hours) per emergency room (ER) visit. The Massachusetts state average visit time was 4.06 hours.

For the past eight years, the average ophthalmology visit time in the Mass. Eye and Ear Emergency Department was lower than the average national and state visit times.
Distribution of Top Twenty Urgent Ophthalmology Diagnoses

During calendar year 2017, there were 14,647 ophthalmic emergency initial encounters to the Mass. Eye and Ear Emergency Department. Of these, 4,750 were associated with urgent diagnoses. The top twenty urgent diagnoses represented 4,358 (29.8%) of the total emergency room initial encounters and are depicted below and ranked according to their frequency.

The top five most frequent diagnoses include keratitis, iridocyclitis, corneal foreign body, retinal detachment, and corneal ulcer.
Emergency Department

Ophthalmology “Left Without Being Seen” (LWBS) Rate

“Left without being seen” (LWBS) refers to patients who present to an emergency department but leave before being seen by a physician. The Mass. Eye and Ear Emergency Department reported a LWBS rate of 1.0% (160 patients for all 15,523 initial and follow-up ophthalmic emergency encounters) in calendar year 2017. According to a 2009 report by the Society for Academic Emergency Medicine, the national LWBS rate is 1.7%. LWBS rates vary greatly between hospitals; a review of the literature suggests a national range of 1.7% to 4.4%.

The Mass. Eye and Ear Emergency Department has a lower LWBS rate compared to national benchmarks.

References:

*Data reported for calendar year 2016 depicted only initial encounters. All other calendar years included all ophthalmic emergency visits (initial and follow-up visits).
Eye Trauma Surgery

The Eye Trauma Service at Mass. Eye and Ear provides efficient and successful surgical care for patients with open globe injuries from throughout the region.

Postoperative left eye with a complex corneal laceration and extensive iris involvement after initial repair.

Photo courtesy of Alice Lorch, MD, MPH

Time to Surgical Repair for Open Globe Injuries

During calendar year 2017, 106 open globe injuries presented to the Eye Trauma Service. Of these, seven cases involving intraocular foreign bodies in the posterior segment were repaired by the Retina Service and nine dehisced penetrating keratoplasties were repaired by the Cornea Service; these were not included in the analysis. Ninety patients suffered open globe injuries that required urgent surgical repair by the Eye Trauma Service. All of the 90 patients with open globe injuries (100.0%) were taken to the operating room within 24 hours of arrival at Mass. Eye and Ear. Sixty-three of the 90 patients (70.0%) were taken to the operating room in under 12 hours. Open globe surgeries are sometimes appropriately delayed in the setting of multiple, possibly life-threatening, injuries that take priority for treatment.

The mean time from presentation at the Emergency Department to arrival in the operating room was 8.83 hours (range: 2.18 to 23.97 hours).

Multiple studies suggest the benefit of repairing open globe injuries within 12-24 hours after injury, in particular for the prevention of endophthalmitis.1-2

References

In calendar year 2017, the Eye Trauma Service repaired 100% of presenting open globe injuries within 24 hours after presentation to Mass. Eye and Ear. This rate is similar to prior years.
Postoperative Median Vision

During the 2017 calendar year, 90 eyes of 90 patients had open globe repair by the Mass. Eye and Ear Eye Trauma Service. Of these 90 patients, visual acuity at presentation was recorded in 85 patients. Visual acuity was not possible in five patients due to their mental status. At the time of analysis, 53 patients had five months or more of follow-up at Mass. Eye and Ear, and only these individuals were analyzed for preoperative and postoperative vision. During the 2017 calendar year, the median preoperative vision was “hand motion,” and the median postoperative vision at the closest follow-up visit after five months was 20/50.

Visual prognosis after ocular trauma is highly dependent on the severity of the initial trauma, but these data show that patients with a traumatic open globe injury can regain useful vision after surgery.

In a published retrospective review of 124 pediatric open globe injuries managed by the Eye Trauma Service and/or Retina Service between February 1999 and April 2009, analysis showed a median visual acuity at presentation of “hand motion” (N=123), and a final best corrected median visual acuity of 20/40 (N=124) at ten months median follow-up.1

Rates of Endophthalmitis After Open Globe Repair

During calendar year 2017, 90 patients underwent open globe repair by the Eye Trauma Service. Of these 90 patients, zero (0%) developed endophthalmitis. Similar results were reported since 2009 as shown in the graph.

The standard Mass. Eye and Ear protocol for eye trauma (i.e. surgical repair by a dedicated trauma team and 48 hours of intravenous antibiotics) is associated with post-traumatic endophthalmitis rates far below international benchmarks. A review of the literature suggests that endophthalmitis rates around the world range from 2.6% to 17%. The United States National Eye Trauma Registry has reported an endophthalmitis rate of 6.9% after open globe repair.¹

A published study of our antibiotic protocol for open globe injuries included 675 open globe injuries treated at Mass. Eye and Ear from January 2000 to July 2007. Intravenous vancomycin and ceftazidime were started on admission and stopped after 48 hours for all patients. Patients were discharged on topical antibiotics, corticosteroids, and cycloplegics. Of these 675 eyes, 558 had at least 30 days of follow-up (mean, 11 months). The overall rate of endophthalmitis was 0.9% (5/558 cases).¹ Based on the Mass. Eye and Ear experience and the low percentage of cases with endophthalmitis, we recommend that institutions adopt a standardized protocol for treating open globe injuries and consider the use of prophylactic systemic antibiotics.¹

Cataract Surgery

The Comprehensive Ophthalmology and Cataract Consultation Service at Mass. Eye and Ear provides a full spectrum of integrated patient care, including annual and diabetic eye exams, prescriptions for eyeglasses, continued management of a variety of eye problems, surgical intervention, and subspecialty referrals for advanced care. The most common surgery performed at Mass. Eye and Ear is cataract extraction with intraocular lens implantation.

Achieving Target Refraction (Spherical Equivalent)

During the 2017 calendar year, the Comprehensive Ophthalmology and Cataract Consultation Service performed cataract surgery on 2,892 eyes. This chart depicts the results of the 2,641 eyes that had at least one month of follow-up data. Of these 2,641 eyes, 95.8% (2,531/2,641) achieved within one diopter of target refraction after cataract surgery.

Intraoperative Complication Rates

Of the 2,892 cataract surgeries performed by the Comprehensive Ophthalmology and Cataract Consultation Service during the 2017 calendar year at all surgical locations, only 45 (1.6%) had intraoperative complications. These results are displayed in the graph below. Similar results were reported in calendar years 2012, 2013, 2014, 2015, and 2016, during which only 36/1,464 (2.5%), 44/1,719 (2.6%), 32/1,927 (1.7%), 37/2,023 (1.8%), and 44/2,337 (1.9%) of cataract surgeries, respectively, had intraoperative complications.

In calendar year 2017, there was one case of endophthalmitis after cataract surgery. The patient had best corrected vision 20/100 prior to surgery and presented 25 days after surgery with dense anterior and vitreous inflammation with best corrected vision 20/400. A tap and injection of intravitreal antibiotics (vancomycin and ceftazidime) were performed on the day of presentation. Culture was positive for Staphylococcus epidermidis and resistant to ampicillin and penicillin. At 5 months follow-up after treatment, the patient’s visual acuity improved to 20/30.

Mass. Eye and Ear 2017 Intraoperative Complication Rates:
- Descemet tear: 5/2,892 (0.17%)
- Posterior capsule (PC) tear and/or vitreous loss: 36/2,892 (1.2%)
- Dropped lens/retained lens fragment: 2/2,892 (0.07%)
- Zonular dialysis: 6/2,892 (0.2%)

International Benchmarks:1-5
- Descemet tear: 0% to 0.9%
- Posterior capsule (PC) tear and/or vitreous loss: 0.3% to 4.4%
- Dropped lens/retained lens fragment: 0% to 1.7%
- Zonular dialysis: 0.1% to 1.2%

References:
Retina Surgery

Primary rhegmatogenous retinal detachment (RRD) is one of the most common retinal conditions requiring surgical repair by the Mass. Eye and Ear Retina Service. The Retina Service repairs RRDs with pneumatic retinopexy, pars plana vitrectomy, and/or scleral buckle surgery.

During calendar year 2017, the Mass. Eye and Ear Retina Service performed a total of 1,415 surgeries, of which 745 were for retinal detachments (RDs). From these 745 cases, we excluded chronic RDs of greater than one month duration as well as cases of RDs associated with proliferative vitreoretinopathy, macular holes, trauma, prior pars plana vitrectomy, children less than 18 years of age, Marfan’s, or Stickler’s syndrome. After exclusion criteria were applied, 310 uncomplicated primary RRD surgeries were analyzed. Single surgery success rate was 86.8% (or 269 of 310 eyes) at three months or greater of follow-up. Similar results were reported for calendar years 2012 to 2016.

Benchmarks were determined from a literature review of studies that reported single surgery success rates for at least two of the three surgical techniques in this analysis (i.e., pneumatic retinopexy, pars plana vitrectomy, and/or scleral buckle surgery).

References:
Retina Surgery

Final Retinal Reattachment Rate for Primary Rhegmatogenous Retinal Detachment

During calendar year 2017, 310 uncomplicated primary RRD surgeries were analyzed to determine the final retinal reattachment rate.

Retinal reattachment was successfully achieved in 99.0% (307/310) of eyes. This success rate reflects eyes that had one or more surgeries, which may have included pars plana vitrectomy, scleral buckle, and pneumatic retinopexy. These 310 eyes had at least three months of follow-up from the date of the last surgery. The smaller number of cases in calendar year 2010 may be attributable to more stringent follow-up criteria of having at least five months follow-up data.

With a 99.0% success rate for primary RRD repair after one or more surgeries, the Mass. Eye and Ear Retina Service continues to maintain high success rates for this procedure. For the past eight years, the Retina Service has consistently met international benchmarks of 97% to 100% for successful RRD repair.1-5

References:

Macular Hole Surgery: Single Surgery Success Rate at Three Months

During calendar year 2017, the Mass. Eye and Ear Retina Service performed 86 macular hole surgeries on 79 patients. Of these 86 macular hole surgeries, macular holes associated with RRD, macular holes associated with trauma, holes with a history of prior pars plana vitrectomy, and macular holes of greater than 6 months duration were excluded. After exclusion criteria were applied, a total of 38 primary macular hole surgeries on 38 eyes (which included pars plana vitrectomy, membrane peel, and gas tamponade) were included in the following analysis.

Of the 38 eyes, 37 (97.4%) achieved surgical success with a single operation. Success was defined as any primary macular hole that remained fully closed for longer than three months after the first surgery. These results are a notable improvement from the rates reported for calendar years 2012 to 2016. A review of the literature suggests that single surgery success rates for macular hole surgery range from 89.8% to 93.0% nationally. Of the 38 eyes included for analysis in calendar year 2017, 100.0% (38/38) achieved surgical success after one or two surgeries.

References:
Rates of Endophthalmitis After Intravitreal Injection

During the 2017 calendar year, the Mass. Eye and Ear Retina Service performed 15,492 intravitreal injections. Of these, four cases of infectious endophthalmitis (0.03%) were identified after intravitreal injections.

In the first case, the patient presented three days after intravitreal injection with a visual acuity of hand motion (pre-IVI vision was 20/30), hypopyon, anterior chamber inflammation, and vitreous inflammation. The patient underwent a vitrectomy with repeat injection of vancomycin and ceftazidime. Later that same day the patient underwent vitrectomy with repeat injection of vancomycin, ceftazidime, and dexamethasone. Vitreous culture showed bacillus species. Within a month, inflammation subsided and the infection resolved. At 9 months follow-up after treatment, the patient had best corrected vision of 20/500, compared to a baseline vision of 20/30.

In the second case, the patient presented four days after intravitreal injection with anterior chamber cells, dense vitritis, hypopyon, and a visual acuity of hand motion (pre-IVI vision was 20/50). Anterior chamber and vitreous taps were performed with an intravitreal injection of antibiotics (cefazidime and vancomycin) on the same day. Vitreous culture showed MRSA. A pars plana vitrectomy along with a second tap and injection of antibiotics (cefazidime and vancomycin) was performed the next day. This patient’s best corrected visual acuity (BCVA) was 20/40 at seven months post-treatment, which was better than the baseline vision. The patient underwent systemic MRSA treatment after confirmation of MRSA infection through nasal mucosal swab sampling.

The third case presented three days after intravitreal injection, with a visual acuity of hand motion (pre-IVI vision was 20/40), anterior chamber cells, and corneal haze. A vitreous tap was performed, and intravitreal antibiotics (cefazidime and vancomycin) were given. The vitreous culture showed streptococcus growth. The next day, an anterior chamber washout, pars plana vitrectomy, and intravitreal injection of vancomycin, cefazidime, and dexamethasone were performed. At 5 months post-treatment, the BCVA remained at 20/200 compared to a baseline vision of 20/40.

The fourth case presented four days after intravitreal injection with a visual acuity of hand motion, anterior chamber cells, fibrin, and dense vitritis. A vitreous tap and injection of vancomycin, cefazidime, and dexamethasone along with an anterior chamber tap was performed on the same day. The vitreous culture showed Streptococcus parasanguinis.

At 8 months post-treatment, the patient’s BCVA was light perception compared to a baseline of 20/40.

References:
Uveal melanoma can be treated effectively with radiotherapy, achieving local control of the tumor in most cases and preserving visual function in many patients. Proton beam irradiation is one of the most effective types of radiotherapy for treating these tumors, with reported five-year cumulative failure rates ranging from 2% to 8.4%.^{1,2}

One hundred and five patients were diagnosed with uveal melanoma in calendar year 2013. Of the 105 patients, four patients underwent enucleation and 101 patients received proton beam irradiation. Ninety-seven of these 101 patients returned for at least one follow-up visit and 32% (31/97) of these patients completed at least four years of follow-up by December 31, 2017. By the end of 2017, only one of the 97 patients (1.0%) experienced a recurrence. This recurrence was 34.2 months after initial treatment, and was retreated with proton beam irradiation.

Glaucoma Surgery

The Mass. Eye and Ear Glaucoma Consultation Service provides the full-spectrum of care — ranging from medical therapy and traditional surgery to the latest minimally invasive glaucoma surgeries (MIGS) — for patients of all ages. Our specialists treat patients with all forms and stages of glaucoma — including those with advanced disease — and are often referred complicated cases.

Trabeculectomy and Tube Shunt Infection Rates

The most common incisional surgeries performed at all surgical locations by the Mass. Eye and Ear Glaucoma Consultation Service are trabeculectomy and tube shunt surgery.

During the 2017 calendar year, the Glaucoma Consultation Service performed a total of 296 trabeculectomy and tube shunt surgeries on adults. These surgeries included trabeculectomy (with or without previous scarring) on 118 eyes, and tube shunt surgeries (primary or revision) on 178 eyes. Of these, 83 cases were combined with other procedures, such as cataract extraction or keratoprosthesis surgery. Of note, 21 pediatric cases performed by specialized faculty within the Glaucoma Service were excluded from this analysis.

A review of the literature suggests that trabeculectomy and tube shunt infection rates range from 0.12% to 8.33% internationally depending, in part, on the length of follow-up.¹

During calendar year 2017, there was one reported case of post-surgical endophthalmitis in the Glaucoma Service, leading to an infection rate of 0.3%. The patient presented with bleb-associated endophthalmitis 31 days after trabeculectomy and ExPRESS shunt insertion surgery with a hypopyon and a visual acuity of hand motion, compared to baseline of 20/25. An anterior chamber washout, pars plana vitrectomy, vitreous tap, and intravitreal injection of ceftazidime, vancomycin, and voriconazole were all performed on the same day of presentation. All cultures showed no growth. Bleb revision was performed for persistent hypotony after resolution of the infection. Eleven months after bleb revision surgery, the patient’s vision was 20/80 in the setting of an epiretinal membrane.

Glaucoma Surgery

Trabeculectomy and Glaucoma Tube Shunt Surgery: Intraoperative Complications

During the 2017 calendar year, 296 trabeculectomy surgeries and glaucoma tube shunt surgeries were performed by the Glaucoma Consultation Service. 83 cases that were combined with other glaucoma procedures or with other concomitant procedures (i.e., cataract surgery, secondary lens implantation, or keratoprosthesis surgery), as well as 27 cases combined with Ex-PRESS implantations, were excluded, which left 186 cases for analysis. Of these, 97.8% (182/186) of patients had no intraoperative complications. For trabeculectomy and glaucoma tube shunt surgery, similar results were reported from calendar year 2010 to 2016, during which time 95.5% (234/245), 99.6% (269/270), 97.2% (314/323), 98.6% (214/217), 98.6% (212/215), 99.5% (213/214), and 99.0% (199/201) of patients had no intraoperative complications, respectively. These results are also consistent with an earlier 24-month period between July 2007 and June 2009, when 97.1% (299/308) of eyes had no intraoperative complications.

Mass. Eye and Ear 2017 complication rates:
- Conjunctival tear/buttonhole: 0%
- Hyphema: 1.6%
- Scleral flap trauma: 0%
- Vitreous loss (vitreous prolapse): 0%
- Suprachoroidal hemorrhage: 0%
- Scleral perforation: 0%
- Aqueous misdirection: 0.5%

The 186 cases evaluated included:
- 51 trabeculectomies without scarring
- 10 trabeculectomies with previous scarring
- 88 primary tube surgeries
- 37 tube revisions

International benchmarks:1-5
- Conjunctival tear/buttonhole: 1.1% to 3.0%
- Hyphema: 1.0% to 8.0%
- Scleral flap trauma: 0.7%
- Vitreous loss (vitreous prolapse): 1.0%
- Suprachoroidal hemorrhage: 0% to 1.0%
- Scleral perforation: 0% to 3.0%
- Aqueous misdirection: 0.2% to 1.0%

References:
Mitomycin C Trabeculectomy Reoperation Rates at One Month and Six Months

Trabeculectomy is the gold-standard incisional surgery for glaucoma patients who require surgical intervention. In this analysis, we excluded mitomycin C trabeculectomies that were combined with other procedures, such as cataract surgery, secondary lens implantation, keratoprosthesis procedures, and ExPRESS implantations. From a total of 118 trabeculectomy surgeries, this left 61 mitomycin C trabeculectomies (with or without previous scarring) performed by the Glaucoma Consultation Service for the 2017 calendar year at all surgical locations. Reoperation rates were calculated at the one-month and six-month postoperative time periods. Reoperations were defined as cases requiring further intraocular pressure lowering surgeries (i.e. repeat trabeculectomy, tube shunt surgery, diode cyclophotocoagulation). Two patients were lost to follow-up at the six-month time period.

The reoperation rate for mitomycin C trabeculectomy surgery was 1.6% at one month (1 repeat trabeculectomy in 61 patients available for follow-up) and 5.1% at six months (2 tube shunt surgeries and 1 diode cyclophotocoagulation in 59 patients who had sufficient follow-up). To the best of our knowledge, published data on one- and six-month reoperation rates are lacking; therefore, our reported rates will help to establish new benchmarks.
Glaucoma Laser Surgery: Intraocular Pressure (IOP) Spikes

During calendar year 2017, the Glaucoma Consultation Service performed anterior segment laser procedures, including peripheral iridotomies, capsulotomies, and laser trabeculoplasties, on 588 eyes. Of these, 563 eyes had complete information for analysis, numbering 250 laser peripheral iridotomies, 61 capsulotomies, and 252 laser trabeculoplasties. Of the 252 laser trabeculoplasties, 20 were argon laser trabeculoplasties (ALT) and 232 were selective laser trabeculoplasties (SLT). Medical charts were reviewed to determine the number of patients who developed an intraocular pressure spike of either ≥ 5 mmHg or ≥ 10 mmHg immediately after the laser procedure.

Preoperative and postoperative intraocular pressure (IOP) measurements were taken using the Tono-Pen (Reichert, Buffalo, NY) prior to the laser procedure and within one hour of the conclusion of the laser procedure. For this analysis, if multiple pressure readings were taken, the average pressure reading was used when calculating the IOP difference (postoperative minus preoperative). All measurements were taken by a certified ophthalmic technician. All patients received either brimonidine 0.1% or 0.15% or apraclonidine 0.5% before the laser procedure and prednisolone 1% after the procedure.

<table>
<thead>
<tr>
<th></th>
<th>≥5 mm Hg</th>
<th>≥10 mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser peripheral iridotomy:</td>
<td>24.4%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Capsulotomy:</td>
<td>9.8%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Laser trabeculoplasty:</td>
<td>16.3%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Overall:</td>
<td>19.2%</td>
<td>4.4%</td>
</tr>
</tbody>
</table>

Refractive Surgery (Laser Vision Correction)

The Mass. Eye and Ear Cornea and Refractive Surgery Service provides the most advanced forms of refractive procedures, ranging from laser-assisted in situ keratomileusis (LASIK) and photorefractive keratectomy (PRK) to small incision lenticule extraction (SMILE) and implantable lenses.

(Top) Gas pattern after completion of the laser passes of SMILE.

Photo courtesy of Kathryn M. Hatch, MD

LASIK for Myopia: Achieving Target Refraction (Spherical Equivalent)

During the 2017 calendar year, 272 eyes had LASIK surgery for myopia; of these, 206 had at least one month follow-up data for analysis and the LASIK success rate for myopia at one month was 84.5% (174/206 eyes).

Benchmark data from U.S. Food and Drug Administration (FDA) trials of LASIK for myopia showed that 71.6% of eyes resulted in a refractive error within 0.5 diopters of the intended target correction.1 Further review of the literature suggests that after LASIK surgery for myopia, approximately 70% to 83% of eyes achieve within 0.5 diopters of the intended target correction.1-2

For the past nine years, the Mass. Eye and Ear Cornea and Refractive Surgery Service has consistently exceeded international benchmarks for successful LASIK surgery for myopia.

The overall LASIK success rate for achieving within 0.5 diopters of target refraction for myopia and hyperopia combined in 2017 was 84.4% (195/231 eyes).
LASIK for Different Degrees of Myopia: Achieving Target Refraction (Spherical Equivalent)

In calendar year 2017, 272 eyes had LASIK surgery for myopia; of these, 206 had at least one month follow-up data for analysis. The success rates based on the degree of myopia are illustrated here. LASIK for low myopia was performed on 72 eyes, and of these, 88.9% (64/72 eyes) were successful (achieved within 0.5 diopters of target refraction at one month follow-up). For the 106 eyes with moderate myopia, 84.0% (89/106 eyes) were successful; and for the 28 eyes with high myopia, 75.0% (21/28 eyes) achieved within 0.5 diopters of target refraction at one month follow-up.

Similar results were reported for low myopia and moderate myopia for calendar years 2010 to 2015. However, a reduction in success rate for high myopia was noted in the 2016 calendar year compared to previous years. Upon investigation it was difficult to assess the significance of this drop in the success rate given a low denominator of cases (18 cases).
LASIK for Hyperopia: Achieving Target Refraction (Spherical Equivalent)

Of the 33 eyes that had LASIK surgery for hyperopia during the 2017 calendar year, 25 had three months or more of follow-up data for analysis. The overall 2017 LASIK success rate for achieving within 0.5 diopters of target refraction was 84.0% (21/25 eyes) for hyperopia.

A review of the literature suggests that the success rate for achieving within 0.5 diopters of the intended target correction after LASIK for hyperopia ranges between 66.7% and 91%.1-3

References:

LASIK: Enhancement/Retreatment Rates at Six Months Follow-up

During the 2017 calendar year, 231 of the 303 eyes that had LASIK surgery had sufficient follow-up data for analysis. Sufficient follow-up was defined as at least one month of follow-up for myopia and three months follow-up for hyperopia. Of these 231 eyes, 1.3% (3/231) had an enhancement/retreatment procedure within six months. Similar results have been reported since calendar year 2010 when data collection for enhancement/retreatment rates began.

LASIK retreatment rates of between 3.8% and 29.4% have been reported in the literature.1-3

References:

For the past eight years, the Mass. Eye and Ear Cornea and Refractive Surgery Service has consistently met the international benchmarks for successful LASIK surgery for hyperopia.

For the past nine years, the Mass. Eye and Ear Cornea and Refractive Surgery Service has maintained low enhancement/retreatment rates compared to international benchmarks.
During the 2017 calendar year, the Mass. Eye and Ear Cornea Service performed 279 keratoplasty procedures. Of these, 101 (36.2%) were full-thickness, or penetrating keratoplasty (PK) and 178 (63.8%) were partial-thickness, or lamellar keratoplasties. This distribution analysis excluded 33 PK procedures that were done in combination with retinal, glaucoma, or keratoprosthesis (KPro) procedures, as well as 20 therapeutic PK procedures done for active corneal infections or non-healing ulcers. This left 48 PKs for inclusion in the distribution analysis compared to 178 partial-thickness transplants. The subdivision of lamellar keratoplasty procedures was 67 Descemet’s stripping endothelial keratoplasties (DSEKs), 103 Descemet’s membrane endothelial keratoplasties (DMEKs), and 8 deep anterior lamellar keratoplasties (DALKs).
Penetrating Keratoplasty

Preoperative and postoperative right eye that underwent penetrating keratoplasty (PK) for pseudomonas keratitis in a prior radial keratotomy incision.

Photos courtesy of James Chodosh, MD, MPH.

Surgical Indications for Penetrating Keratoplasty (PK)

During the 2017 calendar year, 101 full-thickness penetrating keratoplasty (PK) procedures were performed by the Mass. Eye and Ear Cornea Service. The current analysis includes only elective PKs that had at least three months of follow-up data available and that were not done in combination with retinal, glaucoma, or keratoprosthesis (KPro) procedures. Using these exclusion criteria, 43 (42.6%) elective PKs remained for analysis for calendar year 2017. These 43 elective PKs included both first time grafts in uninflamed host beds as well as PKs performed in eyes at high risk of rejection, including eyes with extensive corneal neovascularization and/or a previous failed corneal graft.

Indications for elective PKs included failed corneal graft (14/43, 32.6%), corneal scar (14/43, 32.6%), keratoconus (7/43, 16.3%), bullous keratopathy (4/43, 9.3%), and corneal edema (4/43, 9.3%).

![Pie chart showing the distribution of indications for elective PKs: Failed Corneal Graft 32.6%, Corneal Scar 32.6%, Keratoconus 16.3%, Bullous Keratopathy 9.3%, Corneal Edema 9.3%.](image-url)
Cornea Surgery: Clear Corneal Grafts After Penetrating Keratoplasty (PK) Surgery at Three Months Follow-up

Of the 43 elective PKs included, 40 (93.0%) achieved surgical success, which is defined as a graft at three months follow-up with minimal to no clinical edema and with sufficient clarity to permit the examiner to have an unencumbered view of the interior of the eye, including iris details.

Mass. Eye and Ear
PK surgery success rates are comparable to international benchmarks.1,2

Clear Corneal Grafts After Partial-Thickness Keratoplasty Surgery at Three Months Follow-up

Of 178 partial-thickness keratoplasties performed in calendar year 2017 by the Mass Eye and Ear Cornea Service, 124 were elective procedures, not done in combination with retinal or glaucoma procedures, with at least three months of follow-up data, and as such, were included in the analysis. These 124 procedures included 34 Descemet’s stripping endothelial keratoplasties (DSEKs), 85 Descemet’s membrane endothelial keratoplasties (DMEKs), and 5 deep anterior lamellar keratoplasties (DALKs). Of these 124 procedures, 112 (90.3%) achieved surgical success, which is defined as a graft at three months follow-up with minimal to no clinical edema and with sufficient clarity to permit the examiner to have an unencumbered view of the interior of the eye, including iris details. When the data were subdivided by lamellar graft type, DMEK and DSEK graft success rates were similar compared to previous years. There was a decrease in DALK graft success rate in 2017 compared to prior years; however, the DALK success rate was not statistically significantly different to previous years given the limited number of grafts.

References:

*With a significance level of 0.05, we did not find any statistically significant difference between the percentage of clear grafts after a DALK procedure in 2016 and 2017 (p value = 0.21).
During the 2017 calendar year, the Mass. Eye and Ear Ophthalmic Plastic Surgery Service performed external dacryocystorhinostomy (Ex-DCR) procedures on 54 eyes of 41 patients. This year, three eyes of 3 patients were excluded for pre-existing ocular conditions (lymphoma, IgG4 disease of orbits, and post-traumatic lacrimal obstruction). Full exclusion criteria for pre-existing ocular conditions include granulomatosis with polyangiitis, sarcoidosis, cancer (e.g. lymphoma), benign tumors, post-traumatic lacrimal obstruction, and congenital cases. Eight eyes of 4 patients were excluded because of a history of prior lacrimal surgery. This analysis includes the remaining 43 eyes of 34 patients who underwent primary Ex-DCR in 2017 for primary acquired nasolacrimal duct obstruction (NLDO). Of these eyes, none (0%) required a second procedure within six months in order to achieve surgical success. Similar results were reported for calendar years 2012, 2014, 2015, and 2016, during which time there were no reoperations within six months of primary Ex-DCR.

Ex-DCR is a common surgical method for NLDO. A review of the literature suggests that 7.8% to 12.5% of patients require reoperation following primary Ex-DCR for primary acquired NLDO.

References:

For the past six years, the Mass. Eye and Ear Ophthalmic Plastic Surgery Service has maintained a low reoperation rate for Ex-DCR surgeries compared to international benchmarks.
Reoperation Rate for Primary Endoscopic Dacryocystorhinostomy (En-DCR) Surgery at Six Months Follow-up

During the 2017 calendar year, the Mass. Eye and Ear Ophthalmic Plastic Surgery Service performed endoscopic dacryocystorhinostomy (En-DCR) procedures on 42 eyes of 34 patients. Thirteen eyes of 11 patients were excluded for pre-existing ocular conditions, such as granulomatosis with polyangiitis, sarcoidosis, cancer (e.g. lymphoma), benign tumors, post-traumatic lacrimal obstruction, and congenital cases. Fifteen eyes of 11 patients also were excluded because of a history of prior lacrimal surgery. This analysis includes the remaining 14 eyes of 14 patients who underwent primary En-DCR in 2017 for primary acquired nasolacrimal duct obstruction (NLDO). None of these 14 eyes required a second procedure within six months to achieve surgical success.

A review of the literature suggests that 2% to 11% of patients who undergo primary En-DCR for primary acquired NLDO require a revision.\(^1\)\(^-\)\(^4\)

In contrast to conventional external DCR (Ex-DCR), En-DCR is a minimally invasive procedure that is possible due to technological advances in instruments used in rhinologic surgery. This analysis includes En-DCR procedures done in patients with underlying sinus disease or other intra-nasal abnormality such as significant septal deviation. Of the 42 eyes, 21 eyes of 17 patients who had concomitant chronic rhinosinusitis or severe septal deviation were done in collaboration with ENT surgeons from the Mass. Eye and Ear Rhinology Division.

References:
\(^1\)Dolman PJ. Comparison of external dacryocystorhinostomy with nonlaser endonasal dacryocystorhinostomy. Ophthalmology 2003; 110(1): 78-84.
Reoperation Rate for Upper Lid Surgeries at Six Months Follow-up

During the 2017 calendar year, the Mass. Eye and Ear Ophthalmic Plastic Surgery Service performed upper blepharoplasty and/or ptosis repair surgeries on 852 eyelids in 479 patients. These upper lid surgeries included (but were not limited to) functional eyelid surgery, cosmetic eyelid surgery, and surgeries on patients with other medical conditions, such as neurogenic ptosis, myogenic ptosis, congenital ptosis, and thyroid eye disease. Of these 852 lids, 146 were excluded because of a history of prior upper lid surgery, such as tumor removal, orbital decompression, blepharoplasty, and ptosis repair. This left 706 lids for the following analysis. Of these 706 lids, only 4.1% (29/706) required a second procedure within six months in order to achieve surgical success.

A review of the literature suggests that reoperation rates after eyelid surgery range from 2.6% to 8.7%.1-2

The Mass. Eye and Ear Ophthalmic Plastic Surgery Service has maintained a low reoperation rate for upper eyelid surgeries compared to international benchmarks.

Diplopia is one of the most common indications for surgical intervention at the Mass. Eye and Ear Neuro-Ophthalmology Service.
Underlying Etiologies Associated with Adult Strabismus Surgery

The below analysis depicts the etiologies of adult strabismus surgery for calendar year 2017. Of the 193 strabismus surgery cases, the most common etiology was idiopathic or congenital strabismus (32.1% or 62 patients). Fourth nerve palsy was the second most common cause (15.0% or 29 patients). Other etiologies included thyroid eye disease (13.5% or 26 patients), sagging eye syndrome (9.8% or 19 patients), 6th nerve palsy (9.3% or 18 patients), traumatic strabismus (6.2% or 12 patients), sensory exotropia (3.6% or 7 patients), 3rd nerve palsy (2.6% or 5 patients), dorsal midbrain syndrome (2.1% or 4 patients), heavy eye syndrome (1.0% or 2 patients), and Duane syndrome (1.0% or 2 patients). There was one patient treated with each of the following diagnoses: cerebellar ataxia, skew deviation, combined nerve palsies, cerebellar degeneration, Myasthenia gravis, Brown syndrome, and neurofibromatosis (NF) type 1.

The most common indications for adult strabismus surgery in the Neuro-Ophthalmology Service were idiopathic/congenital strabismus, 4th nerve palsy, thyroid eye disease, and sagging eye syndrome.
Success Rates for Adult Strabismus Surgery at Six Months Follow-up

In calendar year 2017, 163 of 193 patients (84.5%) had diplopia prior to their surgery. Of these 163 patients, 138 had at least one month follow-up data and therefore were included in the following analysis. Postoperatively, 113 of 138 patients (81.9%) were without diplopia in primary position or had a deviation less than six prism diopters after a single surgery that did not require prism glasses at their six month follow-up appointment. 12 of 138 patients (8.7%) who had diplopia after surgery were without diplopia in primary position with prism glasses. 12 of 138 patients (5.8%) required a second surgery that was either performed within 6 months (one patient) or scheduled by the time of their six month follow-up visit (7 patients). The remaining 5 of 138 patients (3.6%) had persistent diplopia at their follow-up appointment closest to 6 months.

Of the 193 patients that had strabismus surgery, 175 patients (90.7%) had the adjustable suture technique and 18 patients (9.3%) had a non-adjustable procedure. Of the 175 patients who underwent an adjustable procedure, 54 patients (30.9%) needed an adjustment in the immediate post-operative period 2 to 3 hours following surgery.

There were zero cases that were complicated by scleral perforation and zero cases developed an infection within 30 days of surgery. These results are the same as in calendar years 2012 to 2016.
Neuro-Ophthalmology

The Neuro-Ophthalmology Service at Mass. Eye and Ear diagnoses and treats a wide variety of disorders that affect the cranial nerves and orbit, many of which require advanced imaging.

Providing Imaging Results to Patients

During calendar year 2017, the Mass. Eye and Ear Neuro-Ophthalmology Service ordered 458 outpatient neuroimaging scans (e.g., MRI, CT scans, etc.). Follow-up rates reflect the length of time from when the scan was performed to when the ordering physician was able to successfully reach the patient (not necessarily the first call to the patient).

Of the 458 imaging studies included in the 2017 analysis, scan follow-up rates were as follows: 221 scans (48.3%) were reviewed with the patient within one business day, 271 (59.2%) within two business days, 343 (74.9%) within seven calendar days, and 376 (82.1%) within 14 calendar days.

To the best of our knowledge, there are no ophthalmology studies that report the percentage of patients who receive imaging results at specified time points. The Veterans Health Administration (VHA) published guidelines in 2009 stating that all test results should be given to patients within 14 calendar days after the test results are made available to the physician. Similar guidelines have been published in the European community.1-3

Of the 458 scans that were ordered by a physician in the Neuro-Ophthalmology Service and also completed at Mass. Eye and Ear in 2017, 425 scans (92.8%) had documentation of when the patient was notified of the test results. Similar results were reported for calendar years 2012, 2013, and 2016 during which time 96.7% (348/360), 94.9% (354/373), and 98.1% (406/414) of scans had documentation of follow-up with the patient. A review of the literature revealed that physicians document their follow-up with patients for 64.3% to 100% of scans ordered.4-5

The Mass. Eye and Ear Neuro-Ophthalmology Service has maintained favorable rates of follow-up for results of outpatient imaging studies compared to published guidelines and international benchmarks. It is difficult to determine whether the decreased rate of results reporting to patients within 7 calendar days over the past two years is truly representative of clinical care or due to difficulty with documentation in a new electronic medical record. As a result, efforts are in place to both emphasize to providers the importance of this communication as well as improve ease of accurate documentation within the system.

*Additional scans were identified for calendar year 2012 that were not reported in the previous publication. Inclusion of these cases changed the rate of follow-up within 24 hours from 150/348 (43.1%) to 150/360 (41.7%); follow-up within 48 hours from 203/348 (58.3%) to 203/360 (56.4%); and within seven days from 327/348 (94%) to 327/360 (90.8%).

Strabismus surgery is the most commonly performed ophthalmic procedure in children, and is also performed on adults. Recession and resection procedures are most commonly performed for horizontal misalignment. Other surgeries less frequently performed include loop myopexies and transpositions.

Since the desired surgical outcome depends on the primary indication for surgery, the department designed a goal-determined methodology to assess surgical outcomes, which is utilized here. This analysis includes all patients treated for horizontal strabismus without exclusion, and therefore facilitates stratification based on the presence or absence of risk factors (ophthalmic or systemic) that might impact results. The reported outcomes include procedures performed at Harvard Medical School ophthalmology affiliates by ophthalmologists with joint appointments at Boston Children’s Hospital and the Massachusetts Eye and Ear Pediatric Ophthalmology and Strabismus Service. Procedures reported in the Neuro-Ophthalmology section are not included in this analysis.

References:

Preoperative and postoperative photos courtesy of Boston Children’s Hospital, archive of ophthalmology department.

Intraoperative photo courtesy of Garyfallia Pagonis.
Exotropia Outcomes Stratified by Goal

In 2017, 130 patients with exotropia underwent strabismus surgery. Of these, 37 patients had surgery to restore binocular vision (binocular potential), 68 patients had reconstructive surgery for normalizing interpersonal interactions, and 21 patients had surgery to eliminate double vision (diplopia). The success rates (excellent or good outcomes) were 83.8%, 88.3%, and 100%, respectively. Four surgeries performed to resolve uncomplicated torticollis have been excluded from this analysis due to the small number.

Exotropia Outcomes Stratified by Risk Factors

Of the 130 patients with exotropia, 71 patients had associated risk factors, and 59 patients had no associated risk factors. Risk factors include the following: bilateral vision limitation (e.g. albinism), conditions resulting in hyper-or hypotonia, craniosynostosis or craniofacial anomalies, 3rd nerve palsy, 4th nerve palsy, prior strabismus surgery, Duane syndrome, prior surgery for retinal detachment, Graves’ orbitopathy, antecedent orbital trauma with or without orbital fracture, congenital fibrosis of the extraocular muscles, and simultaneous surgery for nystagmus or vertical strabismus. Despite these complicating conditions, 93.0% of strabismus surgeries for exotropia with an above risk factor had an excellent or good outcome, as defined by the metrics published by Chang et al.1

Esotropia Outcomes Stratified by Goal

In 2017, 211 patients with esotropia underwent strabismus surgery. Of these, 81 patients had surgery to restore binocular vision (binocular potential), 72 patients had reconstructive surgery for normalizing interpersonal interactions, and 51 patients had surgery to eliminate double vision (diplopia). The success rates (excellent or good outcomes) were 83.9%, 87.5%, and 94.1%, respectively. Seven surgeries performed to resolve uncomplicated torticollis have been excluded from this analysis due to the small number.

Esotropia Outcomes Stratified by Risk Factors

Of the 211 patients with esotropia, 117 patients had associated risk factors, and 94 patients had no associated risk factors. Despite these complicating conditions, 88.0% of strabismus surgeries for esotropia with an above risk factor had excellent or good outcomes as defined by the metrics published by Chang et al.1

Distribution of Strabismus Patients by Age

The Strabismus Service at Boston Children's Hospital offers comprehensive evaluation and treatment for children and adults with strabismus. A total of 435 strabismus surgeries were performed in 2017, with patients ranging from 7 months to 86 years of age.

Distribution of Risk Factors in Strabismus Patients

Of the 435 strabismus surgeries performed in 2017, a total of 188 patients presented with associated risk factors. The most common risk factors were prior strabismus surgery (26.4%), cerebral palsy (15.1%), and cranio-facial disorders (12.3%).

*Includes bacterial meningitis, coloboma, CFEOM (type 1), glaucoma, middle cerebral artery infarct, unilateral cataract, orbital fracture, and retinopathy of prematurity.
Scleral Perforation During Strabismus Surgery

Scleral perforation is a major complication of strabismus surgery, typically occurring during the reattachment of the eye muscles to the globe. An associated retinal hole can lead to retinal detachment in some cases.

Of the 435 strabismus procedures performed in 2017, there was one (0.23%) scleral perforation.

Infection Within 30 Days after Surgery

Intra- or extraocular surgery may be complicated by postoperative infection. The types of infection after strabismus surgery that were included in this analysis were endophthalmitis, sub-Tenon's space abscess, subconjunctival abscess, and cellulitis.

In calendar year 2017, there were no post-operative infections reported for strabismus surgery. In calendar years 2013, 2014, 2015, and 2016, three of 350 strabismus procedures were complicated by orbital cellulitis, one of 578 procedures was complicated by a suture abscess, one of 558 was complicated by a post-operative pre-septal cellulitis, and one of 610 procedures was complicated by post-operative pyomyositis of an extraocular muscle, respectively.

There were no post-operative infections for pediatric cataract and ptosis surgery in calendar year 2017, which has been consistent since reporting began in 2013.

References:
2. Bradbury JA. What information can we give to the patient about the risks of strabismus surgery. Eye (Lond) 2015; 29(2):252-257.

2013
2014
2015
2016
2017 (N = 367) (N = 578) (N = 558) (N = 610) (N = 435)

0.54
0.0
0.0
0.0
0.23

0.08% to 1.5% 1-3

0.86
0.17
0.18
0.16
0.0

0.05% to 0.09% 4-7
Ocular Immunology and Uveitis Service

Treatment for uveitis and other ocular inflammatory conditions requires a multidisciplinary approach that involves internal medicine and ophthalmology. At the Mass. Eye and Ear Ocular Immunology and Uveitis Service, patients are treated with a range of therapies, including eye drops, prescription NSAIDs, and systemic immunosuppressive medications. In general, the use of systemic immunomodulatory therapy is an indicator of increased severity.

Percentage of Patients on Systemic Immunomodulatory Therapy

The Mass. Eye and Ear Ocular Immunology and Uveitis Service saw a total of 1,419 patients with a diagnosis of non-infectious uveitis over 3,564 office visits during the 2017 calendar year.

Of the 1,419 patients seen in 2017, 708 patients (49.9%) were treated for ocular inflammation with some form of systemic medication, ranging from prescription oral nonsteroidal anti-inflammatory drugs (NSAIDs) (e.g. ibuprofen, naproxen, etc.) to oral corticosteroids (e.g. prednisone) to immunosuppressive agents (e.g. methotrexate, mycophenolate mofetil).

*Data reported for the 2012, 2014, 2015, and 2016 calendar years include all patients seen by the Ocular Immunology and Uveitis Service at any Mass. Eye and Ear location. For calendar year 2013 data, the graphed data depict only patients who were seen at Mass. Eye and Ear, Main Campus, in Boston.

*Data reported for calendar year 2017 include only patients that had non-infectious uveitis seen by the Ocular Immunology and Uveitis Service at any Mass. Eye and Ear location. This change was made to more accurately reflect our patient population with uveitis. The exclusion of patients without uveitis disease, changing our denominator, leads to the reported increased rate of patients on systemic medications.
During calendar year 2017 there were 636 new vision rehab patients. Eleven percent of these new patients (n=70) took part in the PIADS questionnaire looking at the impact of a newly prescribed assistive device (i.e. smart glasses or hand held magnifying device). The PIADS questionnaire is a tool increasingly used by Vision Rehabilitation providers to track the impact of various assistive devices on a patient’s quality of life.\(^1,2\)

The PIADS questionnaire poses a series of questions to each patient, and based on their answer, an integer on a scale from -3 to +3 is recorded for various categories that pertain to daily life. A score of -3 would mean that the device had a strong negative impact in that category, a score of +3 would mean that the device had a strong positive impact, and a score of 0 would be neutral. The averages of the three main categories- competence, adaptability, and self-esteem- are shown in the graph. All three categories reported positive impact values for new patients who received a new vision device.

Published mean PIADS scores in an article specific to 68 CCTV users (a type of electronic magnifier) were 1.21, 0.76, and 0.99 for competence, adaptability, and self-esteem, respectively.\(^3\) Of the 70 patients who took part in the questionnaire at the Mass. Eye and Ear Vision Rehabilitation Service, 23 used an electronic magnifying device. Average PIADS scores of these 23 patients were 2.02, 2.01, and 1.65 for competence, adaptability, and self-esteem, respectively, which all exceed these benchmark values.

*(Left) Image of a patient using a vision assistive device that magnifies text on a page.
Photo by Pierce Harman.*
Ophthalmology Medical Staff and Practice Locations

Ophthalmology Central Referral and Appointments
Phone: 617-573-3202
Mass. Eye and Ear, Main Campus,
243 Charles Street, Boston, MA 02114

Comprehensive Ophthalmology and Cataract Consultation
617-573-3202
Service Director:
Sherleen H. Chen, MD
Sheila Borboli-Gerogiannis, MD
Stacey C. Brauner, MD
Han-Ying Peggy Chang, MD
Elizabeth Fortin, MD
Matthew F. Gardiner, MD
Scott H. Greenstein, MD
Carolyn E. Kloek, MD
Kristine Tan Lo, MD
Alice C. Lorch, MD, MPH
Zhonghui Katie Luo, MD, PhD
Michael Price, MD
Aisha Traish, MD
Christian E. Song, MD
Ryan Vasan, MD
Silas Wang, MD

Emergency Ophthalmology and Hospitalist Service
617-573-3431
Service Director:
Matthew F. Gardiner, MD
Jo-Ann Haney-Tilton, MD, FACS, EMHL
Jane Schweitzer, MD
Aisha Traish, MD

Eye Trauma Appointments
617-573-3022
Service Director:
Elizabeth Rossin, MD, PhD (AY19)

Glaucoma
617-573-3670
Service Director:
David S. Friedman, MD, MPH, PhD
Teresa C. Chen, MD
Cynthia L. Grosskreutz, MD, PhD
Milica Margeta, MD, PhD
Courtney Ondeck, MD, MPhil
Lucy Q. Shen, MD
David A. Solá-Del Valle, MD
Allison Soneru, MD
Tavé van Zyl, MD
Nazlee Zebardast, MD, MSc

Neuro-Ophthalmology
617-573-3412
Service Director:
Joseph F. Rizzo III, MD
Dean M. Cestari, MD
Bart Chwalisz, MD
Elizabeth Fortin, MD
John W. Gittinger, Jr., MD
Robert Mallery, MD

Adult Strabismus
617-573-3412
Service Director:
Dean M. Cestari, MD

Cornea and External Disease
617-573-3938
Service Director:
Reza Dana, MD, MSc, MPH
James Chodosh, MD, MPH
Han-Yin Peggy Chang, MD
Joseph B. Ciolino, MD
Emma Davies, MD
Claes H. Dohlman, MD, PhD
Deborah S. Jacobs, MD
Ula V. Jurkunas, MD
Roberto Pineda II, MD
Hajirah Saeed, MD
Aisha Traish, MD
Jia Yin, MD, PhD
Ophthalmology Medical Staff and Practice Locations

Ocular Oncology

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Aronow, MD</td>
<td>617-573-3202</td>
</tr>
<tr>
<td>Suzanne K. Freitag, MD</td>
<td></td>
</tr>
<tr>
<td>Evangelos S. Gragoudas, MD</td>
<td></td>
</tr>
<tr>
<td>Ivana K. Kim, MD</td>
<td></td>
</tr>
<tr>
<td>Nahyoung Grace Lee, MD</td>
<td></td>
</tr>
<tr>
<td>Daniel R. Lefebvre, MD</td>
<td></td>
</tr>
<tr>
<td>Shizuo Mukai, MD</td>
<td></td>
</tr>
<tr>
<td>Michael K. Yoon, MD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular Oncology</td>
<td></td>
</tr>
<tr>
<td>Vision Care for the Deaf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew D. Baker, OD</td>
<td>617-573-3185</td>
</tr>
</tbody>
</table>

Ophthalmic Pathology

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frederick A. Jakobiec, MD</td>
<td>617-573-3319</td>
</tr>
<tr>
<td>Thaddeus P. Dryja, MD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ophthalmic Pathology</td>
<td></td>
</tr>
<tr>
<td>Vision Care for the Deaf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suzanne K. Freitag, MD</td>
<td>617-573-5550</td>
</tr>
<tr>
<td>Lynette Johns, OD</td>
<td></td>
</tr>
<tr>
<td>Nahyoung Grace Lee, MD</td>
<td></td>
</tr>
<tr>
<td>Daniel R. Lefebvre, MD</td>
<td></td>
</tr>
<tr>
<td>Michael K. Yoon, MD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ophthalmic Plastic Surgery</td>
<td></td>
</tr>
<tr>
<td>Vision Care for the Deaf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optometry/Contact Lens</td>
<td></td>
</tr>
<tr>
<td>Vision Care for the Deaf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy C. Watts, OD</td>
<td>617-573-3185</td>
</tr>
<tr>
<td>Mark Bernardo, OD</td>
<td></td>
</tr>
<tr>
<td>Shannon Blidgon, OD</td>
<td></td>
</tr>
<tr>
<td>Gabriel Fickett, OD</td>
<td></td>
</tr>
<tr>
<td>Charles D. Leahy, OD, MS</td>
<td></td>
</tr>
<tr>
<td>Patrick Lee, OD</td>
<td></td>
</tr>
<tr>
<td>Yan Jiang, OD, PhD</td>
<td></td>
</tr>
<tr>
<td>Brittney J. Mazza, OD</td>
<td></td>
</tr>
<tr>
<td>Amy Scally, OD</td>
<td></td>
</tr>
<tr>
<td>Xiaohong Zhou, OD, PhD</td>
<td></td>
</tr>
<tr>
<td>Karen Zar, OD</td>
<td></td>
</tr>
</tbody>
</table>

Vision Care for the Deaf

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew D. Baker, OD</td>
<td>617-573-3185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric Ophthalmology and Adult Strabismus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(an on-site collaboration with Boston Children’s Hospital)</td>
<td></td>
</tr>
<tr>
<td>Ophthalmologist-in-Chief, Boston Children’s Hospital:</td>
<td></td>
</tr>
<tr>
<td>- David G. Hunter, M.D., Ph.D.</td>
<td></td>
</tr>
<tr>
<td>Service Director, Mass. Eye and Ear:</td>
<td></td>
</tr>
<tr>
<td>- Melanie A. Kazlas, MD</td>
<td></td>
</tr>
<tr>
<td>Anna Maria Baglieri, OD</td>
<td></td>
</tr>
<tr>
<td>Kimberley Chan, OD</td>
<td></td>
</tr>
<tr>
<td>Linda R. Dagi, MD</td>
<td></td>
</tr>
<tr>
<td>Gena Heidary, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>Jason Mantagos, MD</td>
<td></td>
</tr>
<tr>
<td>Ankoor S. Shah, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>Mary C. Whitman, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>Carolyn S. Wu, MD, PhD</td>
<td></td>
</tr>
</tbody>
</table>

Refractive Surgery

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathryn M. Hatch, MD</td>
<td>617-573-3234</td>
</tr>
<tr>
<td>Emma Davies, MD</td>
<td></td>
</tr>
<tr>
<td>Ula V. Jurkunas, MD</td>
<td></td>
</tr>
<tr>
<td>Zhonghui Luo, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>Roberto Pineda II, MD</td>
<td></td>
</tr>
<tr>
<td>Jia Yin, MD, PhD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractive Surgery</td>
<td></td>
</tr>
<tr>
<td>Vision Care for the Deaf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evangelos S. Gragoudas, MD</td>
<td></td>
</tr>
<tr>
<td>Associate Service Director:</td>
<td></td>
</tr>
<tr>
<td>- Dean Eliott, MD</td>
<td></td>
</tr>
<tr>
<td>Mary Aronow, MD</td>
<td></td>
</tr>
<tr>
<td>Jason I. Comander, MD, PhD</td>
<td></td>
</tr>
</tbody>
</table>

Retina

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nahyoung Grace Lee, MD</td>
<td>617-573-3288</td>
</tr>
<tr>
<td>Daniel R. Lefebvre, MD</td>
<td></td>
</tr>
<tr>
<td>Michael K. Yoon, MD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retina</td>
<td></td>
</tr>
<tr>
<td>Vision Care for the Deaf</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ophthalmology Medical Staff and Practice Locations continued on page 50</td>
<td></td>
</tr>
</tbody>
</table>
Ophthalmology Medical Staff and Practice Locations (continued)

Rachel Huckfeldt, MD, PhD
Deeba Husain, MD
Ivana K. Kim, MD
Leo A. Kim, MD, PhD
Jan Kylstra, MD
John L. Loewenstein, MD
John B. Miller, MD
Shizuo Mukai, MD
Lucia Sobrin, MD, MPH
Demetrios G. Vavvas, MD, PhD
David M. Wu, MD, PhD
Yoshishiro Yonekawa, MD
Lucy H. Y. Young, MD, PhD

Inherited Retinal Disorders Service
617-573-3621
Service Director:
Eric A. Pierce, MD, PhD
Jason I. Comander, MD, PhD
Brian Hafler, MD, PhD
Rachel Huckfeldt, MD, PhD

Uveitis and Immunology
617-573-3591
Service Director:
George N. Papaliodis, MD
Nicholas J. Butler, MD
John Kempen, MD, MPH, MHS, PhD
Lucia Sobrin, MD, MPH

Vision Rehabilitation
617-573-4177
Service Director:
Amy Watts, OD
Calliope Galatis, OD
Kevin E. Houston, OD
Patrick Lee, OD
Lotfi Merabet, OD, PhD, MPH

Mass. Eye and Ear, Main Campus
243 Charles Street,
Boston, MA 02114
617-573-3202

Mass. Eye and Ear, East Bridgewater
400 N. Bedford Street,
E. Bridgewater, MA 02333
508-378-2058

Mass. Eye and Ear, Longwood
800 Huntington Avenue,
Boston, MA 02115
617-398-2947
Site Director: Carolyn E. Kloek, MD

Mass. Eye and Ear, Malden
578 Main Street,
Malden, MA 02148
781-321-6544
Site Director: Michael Price, MD

Mass. Eye and Ear, Plainville
30 Man Mar Drive Suite 2,
Plainville, MA 02762
508-695-9550
Site Director: Magdalena Krzystolik, MD

Mass. Eye and Ear, Providence
One Randall Square, Suite 203,
Providence, RI 02904
401-453-4600
Site Director: Magdalena Krzystolik, MD

Mass. Eye and Ear, Stoneham
1 Montvale Avenue,
Stoneham, MA 02180
781-279-4418
Site Director:
Matthew F. Gardiner, MD
Director of Retina Consultants:
Deeba Husain, MD

Mass. Eye and Ear, Waltham
1601 Trapelo Road, Reservoir Place, Suite 184,
Waltham, MA 02451
781-890-1023
Site Director: Kathryn M. Hatch, MD
Contributors 2018

Joshua Agranat
Susan Alioto
Shannon Andrade
Christopher Andreoli
Grayson Armstrong
Olamide Awosanya
Lucy Baez
Linda Belkner
Steve Bennet
Sheila Borboli-Gerogiannis
Stacey Brauner
Carol Brennan
Dean Cestari
Peggy Chang
Kathleen Charbonnier
Stephanie Chauvet
Sherleen Chen
Teresa Chen
James Chodosh
Nadine Clouse
Janet Cohan
Liza Cohen
Louise Collins
Jason Comander
Marcio Correa
Greta Covino
Linda Dagi
Mohammad Dahrouj
Reza Dana
Emma Davies
Mindy Davis
Suzanne Day
Andrea Dean
Anne-Marie Donnelly
Marlene Durand
Beth Durkee
Dean Eliott
Preethi Fonseka
Suzanne Freitag
Deborah Gass
Evangelos Gragoudas
Paul Greenberg
Scott Greenstein
Seanna Grob

Pierce Harman
Kathryn Hatch
Kevin Houston
Constance Hunt
David Hunter
Jenna Iandolo
Ula Jurkunas
Melanie Kazlas
Mary Kennedy
Ivana Kim
Carolyn Kloek
Magdalena Krzysztolik
Jan Kylstra
Anne Marie Lane
Daniel Lefebvre
Olga Levy
Patricia Li
Wendy Liu
Kristine Lo
John Loewenstein
Migdali Lorenzo
Katie Luo
Hyanna Malcolm
Milica Margeta
Alexandra Martinez
Jonathan Mazzone
Fran McDonald
Shannon McDonough
John Miller
Anne Murphy
Sheelagh Nelis-Swain
Victoria North
Marlene Oliveira
Adam Ovoian
George Papaliodis
Louis Pasquale
Tatyana Pearson
Joanne Peters
Linda Pittsley
Elizabeth Portante
Corinne Powers
Michael Price
Edith Reshef
Mike Ricci

Debbie Rich
Alyssa Rizzini
Joseph Rizzo
Elizabeth Rossin
Charles Ruberto
Leanne Scorzoni
Barbara Scully
Lucy Shen
Damon Singletary
JuDana Smith
Lucia Sobrin
Brian Song
Christian Song
Jennifer Street
Tomasz Stryjewski
Marisa Tieger
Debra Trocchi
Ryan Vasan
Ann Vinton
Debra Walker
Jessica Walker
Silas Wang
Yvonne Wang
Suzanne Ward
Amy Watts
Marcia Widmer
Janey Wiggs
Julia Wong
Xuyang Yao
Jia Yin
Yoshihiro Yonekawa
Lucy Young
Amy Yuan

Research fellows:
Mirjana Nordmann
Colleen Szypko

Graphic Design by:
Garyfallia Pagonis
<table>
<thead>
<tr>
<th>Department</th>
<th>Description of Change Compared to Prior Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMERGENCY DEPARTMENT</td>
<td>Initial and follow-up visits were included in the current analysis. Last year’s analysis only included initial encounters.</td>
</tr>
<tr>
<td>Ophthalmology Visit Times, “Left Without Being Seen”</td>
<td>The top 20 urgent diagnoses seen in the Emergency Department are listed after analysis of all diagnoses made for every encounter.</td>
</tr>
<tr>
<td>Distribution of Ophthalmology Diagnoses</td>
<td></td>
</tr>
</tbody>
</table>

| **GLAUCOMA SURGERY** | All pediatric cases were excluded. |
| Glaucoma Surgery: Intraoperative Complications, Trabeculectomy Reoperation Rates | |

| **CORNEA SURGERY** | All pediatric cases were excluded. |
| Keratoplasty Surgery: Distribution, Surgical Indications for Penetrating Keratoplasty, Clear Corneal Grafts After Penetrating Keratoplasty, Clear Corneal Grafts After Partial Thickness Keratoplasty | |

NEURO-OPHTHALMOLOGY SERVICE	Removed in favor of quantitative metrics.
Demographics of Adult Strabismus Surgery Patients	
Number of Muscles Operated on Per Patient Having Adult Strabismus Surgery	
Success Rates for Adult Strabismus Surgery	Cases with less than 1 month follow-up data were excluded from the analysis.

| **OCULAR IMMUNOLOGY AND UVEITIS SERVICE** | Only patients that had non-infectious uveitis were included in the current analysis. Previous years’ analyses included all patients seen by the Ocular Immunology and Uveitis Service. |
| Percentage of Patients on Systemic Immunomodulatory Therapy | |

VISION REHABILITATION SERVICE	New outcome measure.
Psychosocial Impact of Assistive Devices Scale (PIADS)	
Patient Experience Ratings	Removed in favor of quantitative metrics.